使用 PostgreSQL 的 EXPLAIN 时,控制节点的出现,对查询复杂度的影响不可忽视。
Limit PostgreSQL 用户都会使用 LIMIT,因为它非常简单,但让我们来全面描述一下它。LIMIT 操作会执行其下属操作,并仅返回该操作所返回结果中的前 N 行。通常情况下,在返回结果后它会停止下属操作,但在某些情况下(例如在 PL/PgSQL 函数中),当下属操作返回第一行时,该操作可能已经完成了。
简单示例:
explain analyze select * from pg_class; QUERY PLAN --------------------------------------------------------------------------------------------------------- Seq Scan on pg_class (cost = 0.00 . .10 .92 rows = 292 width = 203 ) (actual time = 0.008 . .0 .047 rows = 295 loops = 1 ) Total runtime: 0.096 ms ( 2 rows ) explain analyze select * from pg_class limit 2 ; QUERY PLAN ------------------------------------------------------------------------------------------------------------- Limit (cost = 0.00 . .0 .07 rows = 2 width = 203 ) (actual time = 0.009 . .0 .010 rows = 2 loops = 1 ) - > Seq Scan on pg_class (cost = 0.00 . .10 .92 rows = 292 width = 203 ) (actual time = 0.008 . .0 .009 rows = 2 loops = 1 ) Total runtime: 0.045 ms ( 3 rows )
正如你所看到的,在第二个示例中使用 LIMIT 使得底层的顺序扫描(Seq Scan)在找到两行数据后立即停止了工作。
Append 该计划只是执行多个下属操作,并将所有返回的行合并为一个结果集返回。
它用于 UNION/UNION ALL 查询:
explain select oid from pg_class union all select oid from pg_proc union all select oid from pg_database; QUERY PLAN ----------------------------------------------------------------- Append (cost = 0.00 . .104 .43 rows = 2943 width = 4 ) - > Seq Scan on pg_class (cost = 0.00 . .10 .92 rows = 292 width = 4 ) - > Seq Scan on pg_proc (cost = 0.00 . .92 .49 rows = 2649 width = 4 ) - > Seq Scan on pg_database (cost = 0.00 . .1 .02 rows = 2 width = 4 ) ( 4 rows )
在这里你可以看到,Append 操作对三个表执行了三次扫描,并将所有行合并后返回。
请注意,上面使用的是 UNION ALL。如果我们使用 UNION,结果会是这样:
explain select oid from pg_class union select oid from pg_proc union select oid from pg_database; QUERY PLAN ----------------------------------------------------------------------- HashAggregate (cost = 141.22 . .170 .65 rows = 2943 width = 4 ) - > Append (cost = 0.00 . .133 .86 rows = 2943 width = 4 ) - > Seq Scan on pg_class (cost = 0.00 . .10 .92 rows = 292 width = 4 ) - > Seq Scan on pg_proc (cost = 0.00 . .92 .49 rows = 2649 width = 4 ) - > Seq Scan on pg_database (cost = 0.00 . .1 .02 rows = 2 width = 4 ) ( 5 rows )
这是因为 UNION 会去除重复的行:在这种情况下,这是通过哈希聚合(HashAggregate)操作来实现的。
InitPlan 当查询中的某部分可以(或必须)在其他所有操作之前计算,并且它不依赖于查询其余部分的任何内容时,就会出现这种计划。
例如,假设你有这样一个查询:
explain select * from pg_class where relkind = ( select relkind from pg_class order by random() limit 1 ); QUERY PLAN ------------------------------------------------------------------------------------------ Seq Scan on pg_class (cost = 13.11 . .24 .76 rows = 73 width = 203 ) Filter : (relkind = $ 0 ) InitPlan 1 ( returns $ 0 ) - > Limit (cost = 13.11 . .13 .11 rows = 1 width = 1 ) - > Sort (cost = 13.11 . .13 .84 rows = 292 width = 1 ) Sort Key: (random()) - > Seq Scan on pg_class pg_class_1 (cost = 0.00 . .11 .65 rows = 292 width = 1 ) ( 7 rows )
在这种情况下,需要先执行 LIMIT / 排序 / 顺序扫描操作,然后再对 pg_class 执行常规的顺序扫描,因为 PostgreSQL 必须将 relkind 值与子查询返回的值进行比较。
另一方面,如果我这样写:
explain select * , ( select length( 'redrock' )) from pg_class; QUERY PLAN ------------------------------------------------------------- Seq Scan on pg_class (cost = 0.01 . .10 .93 rows = 292 width = 203 ) InitPlan 1 ( returns $ 0 ) - > Result (cost = 0.00 . .0 .01 rows = 1 width = 0 ) ( 3 rows )
PostgreSQL 会正确地发现子查询的列不依赖于 pg_class 表中的任何数据,因此它只需运行一次,不必为每一行重新计算长度。
当然,你可以有多个初始计划,如下所示:
explain select * , ( select length( 'redrock' )) from pg_class where relkind = ( select relkind from pg_class order by random() limit 1 ); QUERY PLAN ------------------------------------------------------------------------------------------ Seq Scan on pg_class (cost = 13.12 . .24 .77 rows = 73 width = 203 ) Filter : (relkind = $ 1 ) InitPlan 1 ( returns $ 0 ) - > Result (cost = 0.00 . .0 .01 rows = 1 width = 0 ) InitPlan 2 ( returns $ 1 ) - > Limit (cost = 13.11 . .13 .11 rows = 1 width = 1 ) - > Sort (cost = 13.11 . .13 .84 rows = 292 width = 1 ) Sort Key: (random()) - > Seq Scan on pg_class pg_class_1 (cost = 0.00 . .11 .65 rows = 292 width = 1 ) ( 9 rows )
不过,有一个重要的点是:单个查询中初始计划的编号是 “全局的”,而不是 “按操作的”。
SubPlan 子计划(SubPlan)与嵌套循环(NestedLoop)有点相似,因为它们都可能被多次调用。
调用子计划是为了计算来自子查询的数据,而该子查询实际上依赖于当前行。
例如:
explain analyze select c.relname, c.relkind, ( select count ( * ) from pg_class x where c.relkind = x.relkind) from pg_class c; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------- Seq Scan on pg_class c (cost = 0.00 . .3468 .93 rows = 292 width = 65 ) (actual time = 0.135 . .26 .717 rows = 295 loops = 1 ) SubPlan 1 - > Aggregate (cost = 11.83 . .11 .84 rows = 1 width = 0 ) (actual time = 0.090 . .0 .090 rows = 1 loops = 295 ) - > Seq Scan on pg_class x (cost = 0.00 . .11 .65 rows = 73 width = 0 ) (actual time = 0.010 . .0 .081 rows = 93 loops = 295 ) Filter : (c.relkind = relkind) Rows Removed by Filter : 202 Total runtime: 26.783 ms ( 7 rows )
对于 “pg_class as c” 的扫描所返回的每一行,PostgreSQL 都必须运行子计划,该子计划会检查 pg_class 中有多少行在 relkind 列上具有与当前处理行相同的值。
请注意,“Seq Scan on pg_class x” 行中的 “loops=295”,与前面 “Seq Scan on pg_class c” 节点中的 “rows=295” 是相匹配的。
转载
该文章在 2025/8/27 15:19:19 编辑过